Wine Prediction

wine<-read .scv="" comment----="">('wine.csv')
str(wine)
## 'data.frame':    25 obs. of  7 variables:
##  $ Year       : int  1952 1953 1955 1957 1958 1959 1960 1961 1962 1963 ...
##  $ Price      : num  7.5 8.04 7.69 6.98 6.78 ...
##  $ WinterRain : int  600 690 502 420 582 485 763 830 697 608 ...
##  $ AGST       : num  17.1 16.7 17.1 16.1 16.4 ...
##  $ HarvestRain: int  160 80 130 110 187 187 290 38 52 155 ...
##  $ Age        : int  31 30 28 26 25 24 23 22 21 20 ...
##  $ FrancePop  : num  43184 43495 44218 45152 45654 ...
summary(wine)
##       Year          Price         WinterRain         AGST      
##  Min.   :1952   Min.   :6.205   Min.   :376.0   Min.   :14.98  
##  1st Qu.:1960   1st Qu.:6.519   1st Qu.:536.0   1st Qu.:16.20  
##  Median :1966   Median :7.121   Median :600.0   Median :16.53  
##  Mean   :1966   Mean   :7.067   Mean   :605.3   Mean   :16.51  
##  3rd Qu.:1972   3rd Qu.:7.495   3rd Qu.:697.0   3rd Qu.:17.07  
##  Max.   :1978   Max.   :8.494   Max.   :830.0   Max.   :17.65  
##   HarvestRain         Age         FrancePop    
##  Min.   : 38.0   Min.   : 5.0   Min.   :43184  
##  1st Qu.: 89.0   1st Qu.:11.0   1st Qu.:46584  
##  Median :130.0   Median :17.0   Median :50255  
##  Mean   :148.6   Mean   :17.2   Mean   :49694  
##  3rd Qu.:187.0   3rd Qu.:23.0   3rd Qu.:52894  
##  Max.   :292.0   Max.   :31.0   Max.   :54602
model1<- class="identifier" color="#000000" font="">lm(Price~AGST,data=wine)
summary(model1)
## 
## Call:
## lm(formula = Price ~ AGST, data = wine)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.78450 -0.23882 -0.03727  0.38992  0.90318 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -3.4178     2.4935  -1.371 0.183710    
## AGST          0.6351     0.1509   4.208 0.000335 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4993 on 23 degrees of freedom
## Multiple R-squared:  0.435,  Adjusted R-squared:  0.4105 
## F-statistic: 17.71 on 1 and 23 DF,  p-value: 0.000335
model1$residuals
##           1           2           3           4           5           6 
##  0.04204258  0.82983774  0.21169394  0.15609432 -0.23119140  0.38991701 
##           7           8           9          10          11          12 
## -0.48959140  0.90318115  0.45372410  0.14887461 -0.23882157 -0.08974238 
##          13          14          15          16          17          18 
##  0.66185660 -0.05211511 -0.62726647 -0.74714947  0.42113502 -0.03727441 
##          19          20          21          22          23          24 
##  0.10685278 -0.78450270 -0.64017590 -0.05508720 -0.67055321 -0.22040381 
##          25 
##  0.55866518
SSE<- class="identifier" color="#000000" font="">sum(model1$residuals^2)
SSE
## [1] 5.734875
model2<- class="identifier" color="#000000" font="">lm(Price~AGST+HarvestRain,data=wine)
summary(model2)
## 
## Call:
## lm(formula = Price ~ AGST + HarvestRain, data = wine)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.88321 -0.19600  0.06178  0.15379  0.59722 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.20265    1.85443  -1.188 0.247585    
## AGST         0.60262    0.11128   5.415 1.94e-05 ***
## HarvestRain -0.00457    0.00101  -4.525 0.000167 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3674 on 22 degrees of freedom
## Multiple R-squared:  0.7074, Adjusted R-squared:  0.6808 
## F-statistic: 26.59 on 2 and 22 DF,  p-value: 1.347e-06
SSE<- class="identifier" color="#000000" font="">sum(model2$residuals^2)
SSE
## [1] 2.970373
model3<- class="identifier" color="#000000" font="">lm(Price~AGST+HarvestRain+WinterRain+Age+FrancePop,data=wine)
model3
## 
## Call:
## lm(formula = Price ~ AGST + HarvestRain + WinterRain + Age + 
##     FrancePop, data = wine)
## 
## Coefficients:
## (Intercept)         AGST  HarvestRain   WinterRain          Age  
##  -4.504e-01    6.012e-01   -3.958e-03    1.043e-03    5.847e-04  
##   FrancePop  
##  -4.953e-05
SSE<- class="identifier" color="#000000" font="">sum(model3$residuals^2)
SSE
## [1] 1.732113
summary(model3)
## 
## Call:
## lm(formula = Price ~ AGST + HarvestRain + WinterRain + Age + 
##     FrancePop, data = wine)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.48179 -0.24662 -0.00726  0.22012  0.51987 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -4.504e-01  1.019e+01  -0.044 0.965202    
## AGST         6.012e-01  1.030e-01   5.836 1.27e-05 ***
## HarvestRain -3.958e-03  8.751e-04  -4.523 0.000233 ***
## WinterRain   1.043e-03  5.310e-04   1.963 0.064416 .  
## Age          5.847e-04  7.900e-02   0.007 0.994172    
## FrancePop   -4.953e-05  1.667e-04  -0.297 0.769578    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3019 on 19 degrees of freedom
## Multiple R-squared:  0.8294, Adjusted R-squared:  0.7845 
## F-statistic: 18.47 on 5 and 19 DF,  p-value: 1.044e-06
model4<- class="identifier" color="#000000" font="">lm(Price~AGST+HarvestRain+WinterRain+Age,data=wine)
summary(model4)
## 
## Call:
## lm(formula = Price ~ AGST + HarvestRain + WinterRain + Age, data = wine)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.45470 -0.24273  0.00752  0.19773  0.53637 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3.4299802  1.7658975  -1.942 0.066311 .  
## AGST         0.6072093  0.0987022   6.152  5.2e-06 ***
## HarvestRain -0.0039715  0.0008538  -4.652 0.000154 ***
## WinterRain   0.0010755  0.0005073   2.120 0.046694 *  
## Age          0.0239308  0.0080969   2.956 0.007819 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.295 on 20 degrees of freedom
## Multiple R-squared:  0.8286, Adjusted R-squared:  0.7943 
## F-statistic: 24.17 on 4 and 20 DF,  p-value: 2.036e-07
cor(wine$WinterRain,wine$Price)
## [1] 0.1366505
cor(wine$Age,wine$FrancePop)
## [1] -0.9944851
cor(wine)
##                    Year      Price   WinterRain        AGST HarvestRain
## Year         1.00000000 -0.4477679  0.016970024 -0.24691585  0.02800907
## Price       -0.44776786  1.0000000  0.136650547  0.65956286 -0.56332190
## WinterRain   0.01697002  0.1366505  1.000000000 -0.32109061 -0.27544085
## AGST        -0.24691585  0.6595629 -0.321090611  1.00000000 -0.06449593
## HarvestRain  0.02800907 -0.5633219 -0.275440854 -0.06449593  1.00000000
## Age         -1.00000000  0.4477679 -0.016970024  0.24691585 -0.02800907
## FrancePop    0.99448510 -0.4668616 -0.001621627 -0.25916227  0.04126439
##                     Age    FrancePop
## Year        -1.00000000  0.994485097
## Price        0.44776786 -0.466861641
## WinterRain  -0.01697002 -0.001621627
## AGST         0.24691585 -0.259162274
## HarvestRain -0.02800907  0.041264394
## Age          1.00000000 -0.994485097
## FrancePop   -0.99448510  1.000000000
model5<-lm>(Price~AGST+HarvestRain+WinterRain,data=wine)
summary(model5)
## 
## Call:
## lm(formula = Price ~ AGST + HarvestRain + WinterRain, data = wine)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.67472 -0.12958  0.01973  0.20751  0.63846 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -4.3016263  2.0366743  -2.112 0.046831 *  
## AGST         0.6810242  0.1117011   6.097 4.75e-06 ***
## HarvestRain -0.0039481  0.0009987  -3.953 0.000726 ***
## WinterRain   0.0011765  0.0005920   1.987 0.060097 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.345 on 21 degrees of freedom
## Multiple R-squared:  0.7537, Adjusted R-squared:  0.7185 
## F-statistic: 21.42 on 3 and 21 DF,  p-value: 1.359e-06
wineTest<- class="identifier" color="#000000" font="">read.csv('Wine_test.csv')
str(wineTest)
## 'data.frame':    2 obs. of  7 variables:
##  $ Year       : int  1979 1980
##  $ Price      : num  6.95 6.5
##  $ WinterRain : int  717 578
##  $ AGST       : num  16.2 16
##  $ HarvestRain: int  122 74
##  $ Age        : int  4 3
##  $ FrancePop  : num  54836 55110
predictTest<- span=""> predict(model4,newdata=wineTest)
predictTest
##        1        2 
## 6.768925 6.684910
SST<- span=""> sum((wineTest$Price-mean(wine$Price))^2)
1-SSE/SST
## [1] -4.140916

Nikkei225

28000-28550 up in the early session, down lately.