##sum of squares #########Variance: A Worked Example########## ozone<- span=""> read.table('gardens.txt',header=T)->
attach(ozone) ozone
## gardenA gardenB gardenC ## 1 3 5 3 ## 2 4 5 3 ## 3 4 6 2 ## 4 3 7 1 ## 5 2 4 10 ## 6 3 4 4 ## 7 1 3 3 ## 8 3 5 11 ## 9 5 6 3 ## 10 2 5 10
mean(gardenA)
## [1] 3
mean(ozone$gardenA)
## [1] 3
mean(ozone[,1])
## [1] 3
gardenA-mean(gardenA)
## [1] 0 1 1 0 -1 0 -2 0 2 -1
(gardenA-mean(gardenA))^2
## [1] 0 1 1 0 1 0 4 0 4 1
sum((gardenA-mean(gardenA))^2) #sum of squares
## [1] 12
sum((gardenA-mean(gardenA))^2)/(length(gardenA-1)) #the sum of squares #degree of 9
## [1] 1.2
mean(gardenB)
## [1] 5
gardenB-mean(gardenB)
## [1] 0 0 1 2 -1 -1 -2 0 1 0
(gardenB-mean(gardenB))^2
## [1] 0 0 1 4 1 1 4 0 1 0
sum((gardenB-mean(gardenB))^2)
## [1] 12
sum((gardenB-mean(gardenB))^2)/(length(gardenB)-1)
## [1] 1.333333
mean(gardenC)
## [1] 5
gardenC-mean(gardenC)
## [1] -2 -2 -3 -4 5 -1 -2 6 -2 5
(gardenC-mean(gardenC))^2
## [1] 4 4 9 16 25 1 4 36 4 25
sum((gardenC-mean(gardenC))^2)
## [1] 128
sum((gardenC-mean(gardenC))^2)/(length(gardenC)-1)
## [1] 14.22222
#F test var(gardenC)/var(gardenB)
## [1] 10.66667
2*(1-pf(10.667,9,9)) #The F Distribution
## [1] 0.001624002
help(pf)
## starting httpd help server ... done
var.test(gardenB,gardenB) #built-in F test:
## ## F test to compare two variances ## ## data: gardenB and gardenB ## F = 1, num df = 9, denom df = 9, p-value = 1 ## alternative hypothesis: true ratio of variances is not equal to 1 ## 95 percent confidence interval: ## 0.2483859 4.0259942 ## sample estimates: ## ratio of variances ## 1
gardenC
## [1] 3 3 2 1 10 4 3 11 3 10
#########Variance and Sample Size plot(c(0,32),c(0,15),type='n',xlab='Simple size',ylab='Variance') for(n in seq(3,31,2)){ for(i in 1:30){ x<- span=""> rnorm(n,mean=10,sd=2) points(n,var(x)) } }->
#########A Measure of Unreliability sqrt(var(gardenA)/10)
## [1] 0.3651484
sqrt(var(gardenB)/10)
## [1] 0.3651484
sqrt(var(gardenC)/10)
## [1] 1.19257
########Confidence Intervals #The first argument in qt() is the probability and the second is the #degrees of freedom #left 95% confidence interval value of Student’s t associated with α qt(.025,9)#Sample size 10,d.f 10-1
## [1] -2.262157
qt(.025,df=9)
## [1] -2.262157
##right 95% confidence interval value of Student’s t associated with α qt(.975,9)
## [1] 2.262157
#values of t for 99% are bigger than these (0.005 in each tail): qt(.995,9)
## [1] 3.249836
##99.5% confidence are bigger still (0.0025 in each tail): qt(.9975,9)
## [1] 3.689662
#Bootstrap data<- span=""> read.csv('skewdata.txt') attach(data) names(data)->
## [1] "values"
#This draws the plain graph plot(c(0,30),c(0,60),type='n',xlab='Sample size',ylab='Confidence interval') for(k in seq(5,30,3)){ a<- span=""> numeric(10000) for(i in 1:10000){ a[i]<- span=""> mean(sample(values,k,replace=T)) } points(c(k,k),quantile(a,c(.025,.975)),type='b',pch=21,bg='red') }->->
#At n= 30, the bootstrapped CI based on 10 00 simulations quantile(a,c(.025,.975))
## 2.5% 97.5% ## 24.90652 37.90855
#bootstrapped intervals compared with the intervals calculated from the normal (blue solid line xv <- span=""> seq(5,30,0.1) yv <- span=""> mean(values)+1.96*sqrt(var(values)/xv) plot(c(0,30),c(0,60),type='n',xlab='Sample size',ylab='Confidence interval') for(k in seq(5,30,3)){ a<- span=""> numeric(10000) for(i in 1:10000){ a[i]<- span=""> mean(sample(values,k,replace=T)) } points(c(k,k),quantile(a,c(.025,.975)),type='b',pch=21,bg='red') } lines(xv,yv,col="blue") yv <- span=""> mean(values)-1.96*sqrt(var(values)/xv) lines(xv,yv,col="blue") #Student’s t distribution (green dotted line): yv <- span=""> mean(values)-qt(.975,xv-1)*sqrt(var(values)/xv) lines(xv,yv,lty=2,col="green") yv <- span=""> mean(values)+qt(.975,xv-1)*sqrt(var(values)/xv) lines(xv,yv,lty=2,col="green")->->->->->->->
######################### points<- span=""> c(28,26,10,27,20,38,23,28,25,2) x.m<- span=""> function(x) { #sprintf('x-mean=%f ',x-mean(x)); x-mean(x) } x.m.t<- span=""> function(x) { #x.m() #sprintf('x-mean(x)/length(x)=%f ',x-mean(x)/length(x)) ((x-mean(x))^2) } x_mean<- span=""> x.m(points) x_mean_sqrt<- span=""> x.m.t(points) x_mean->->->->->
## [1] 5.3 3.3 -12.7 4.3 -2.7 15.3 0.3 5.3 2.3 -20.7
x_mean_sqrt
## [1] 28.09 10.89 161.29 18.49 7.29 234.09 0.09 28.09 5.29 428.49
sum(x_mean)/length(points)
## [1] 7.105427e-16
sum(x_mean_sqrt)/length(points)
## [1] 92.21
sqrt(sum(x_mean_sqrt)/length(points))
## [1] 9.602604
mean(points)
## [1] 22.7
(mean(points))^2
## [1] 515.29
var(points)
## [1] 102.4556
Variance
Nikkei225
28000-28550 up in the early session, down lately.
-
まず、米ドルの反対にある欧州単一通貨ユーロを考えることが米ドルの過去、未来を探るのに相応しいため、ユーロ・ドルの展望してみる。 本来ならば、ドル・円でと考えたが、ご承知のとおり、日本株、日本国債、日本外為市場などの東京市場は外国人から見れば、超巨大なローカル市場にすぎない。また、...
-
ECBによる資金供給や公的資金の投入が奏功し、欧州金融機関の融資余力が増しているようだ。 source- nikkei net